Information | |
---|---|
has gloss | eng: The Sobolev conjugate of p for 1\leq p <n, where n is space dimensionality, is : p^*=\fracpn}n-p}>p This is an important parameter in the Sobolev inequalities. Motivation A question arises whether u from the Sobolev space W^1,p}(R^n) belongs to L^q(R^n) for some q>p. More specifically, when does \|Du\|_L^p(R^n)} control \|u\|_L^q(R^n)}? It is easy to check that the following inequality :\|u\|_L^q(R^n)}\leq C(p,q)\|Du\|_L^p(R^n)} (*) can not be true for arbitrary q. Consider u(x)\in C^\infty_c(R^n), infinitely differentiable function with compact support. Introduce u_\lambda(x):=u(\lambda x). We have that :\|u_\lambda\|_L^q(R^n)}^q=\int_R^n}|u(\lambda x)|^qdx=\frac1}\lambda^n}\int_R^n}|u(y)|^qdy=\lambda^-n}\|u\|_L^q(R^n)}^q :\|Du_\lambda\|_L^p(R^n)}^p=\int_R^n}|\lambda Du(\lambda x)|^pdx=\frac\lambda^p}\lambda^n}\int_R^n}|Du(y)|^pdy=\lambda^p-n}\|Du\|_L^p(R^n)}^p The inequality (*) for u_\lambda results in the following inequality for u :\|u\|_L^q(R^n)}\leq \lambda^1-n/p+n/q}C(p,q)\|Du\|_L^p(R^n)} If 1-n/p+n/q\not = 0, then by letting \lambda going to zero or infinity we obtain a contradiction. |
lexicalization | eng: Sobolev conjugate |
instance of | e/Sobolev space |
Lexvo © 2008-2024 Gerard de Melo. Contact Legal Information / Imprint