Information | |
---|---|
has gloss | eng: Legendres conjecture, proposed by Adrien-Marie Legendre, states that there is a prime number between n2 and (n + 1)2 for every positive integer n. The conjecture is one of Landaus problems (1912) and unproven . |
lexicalization | eng: Legendre's conjecture |
instance of | (noun) a hypothesis that has been formed by speculating or conjecturing (usually with little hard evidence); "speculations about the outcome of the election"; "he dismissed it as mere conjecture" conjecture, speculation |
Meaning | |
---|---|
Catalan | |
has gloss | cat: La Conjectura de Legendre, proposada pel matemàtic francès Adrien-Marie Legendre, estableix que per a tot enter positiu n, existeix un nombre primer entre n2 i (n + 1)2. Aquesta conjectura forma part dels anomenats problemes de Landau, i a finals l'any 2007 encara no ha estat provada. |
lexicalization | cat: Conjectura de Legendre |
German | |
has gloss | deu: Die Legendresche Vermutung (nach dem Mathematiker Adrien-Marie Legendre) ist eine zahlentheoretische Vermutung, die besagt, dass für natürliche n zwischen n^2 und (n+1)^2 mindestens eine Primzahl existiert. |
lexicalization | deu: Legendresche Vermutung |
French | |
has gloss | fra: La conjecture de Legendre, proposée par Adrien-Marie Legendre, énonce qu'il existe un nombre premier entre n2 et (n+1)2 pour tout entier n. |
lexicalization | fra: Conjecture De Legendre |
Italian | |
has gloss | ita: La congettura di Legendre, da Adrien-Marie Legendre, afferma che esiste sempre un numero primo compreso fra n^2 ed (n+1)^2. Questa congettura fa parte dei problemi di Landau e, fino ad oggi, non è stata dimostrata. |
lexicalization | ita: congettura di Legendre |
Dutch | |
has gloss | nld: Het vermoeden van Legendre, opgesteld door Adrien-Marie Legendre, stelt dat er voor elk positief geheel getal n een priemgetal tussen n2 en (n + 1) 2 bestaat. |
lexicalization | nld: vermoeden van Legendre |
Portuguese | |
has gloss | por: A conjectura de Legendre, enunciada por de Adrien-Marie Legendre, afirma que existe sempre um número primo entre n^2 e (n+1)^2. Esta conjectura faz parte dos problemas de Landau. |
lexicalization | por: conjectura de Legendre |
Castilian | |
has gloss | spa: La conjetura de Legendre, enunciada por de Adrien-Marie Legendre, afirma que siempre existe un número primo entre n^2 y (n+1)^2. Esta conjetura forma parte de los problemas de Landau. |
lexicalization | spa: conjetura de Legendre |
Chinese | |
lexicalization | zho: 勒讓德猜想 |
Lexvo © 2008-2024 Gerard de Melo. Contact Legal Information / Imprint