Information | |
---|---|
has gloss | eng: In graph theory, the unproven Erdős–Gyárfás conjecture, made in 1995 by the prolific mathematician Paul Erdős and his collaborator András Gyárfás, states that any graph with minimum degree 3 contains a simple cycle whose length is a power of two. Erdős offered a prize of $100 for proving the conjecture, or $50 for a counterexample. |
lexicalization | eng: Erdoes conjecture |
lexicalization | eng: Erdoes-Gyarfas conjecture |
lexicalization | eng: Erdos conjecture |
lexicalization | eng: Erdos-Gyarfas Conjecture |
lexicalization | eng: Erdos-Gyárfás conjecture |
lexicalization | eng: Erdös conjecture |
lexicalization | eng: Erdös-Gyárfás Conjecture |
lexicalization | eng: Erdős-Gyárfás conjecture |
lexicalization | eng: Erdős–Gyárfás conjecture |
instance of | (noun) a hypothesis that has been formed by speculating or conjecturing (usually with little hard evidence); "speculations about the outcome of the election"; "he dismissed it as mere conjecture" conjecture, speculation |
Meaning | |
---|---|
Italian | |
has gloss | ita: In teoria dei grafi, l'indimostrata congettura di Erdős–Gyárfás, proposta nel 1995 dal prolifico matematico Paul Erdős e il suo collaboratore András Gyárfás, afferma che ogni grafo con grado minimo 3 contiene un ciclo semplice la cui lunghezza è una potenza di 2. Erdős mise in palio $100 per la dimostrazione della congettura, o $50 per un controesempio. |
lexicalization | ita: Congettura di Erdős-Gyárfás |
Media | |
---|---|
media:img | Markström-Graph.png |
media:img | Markström-Graph.svg |
Lexvo © 2008-2024 Gerard de Melo. Contact Legal Information / Imprint