Information | |
---|---|
has gloss | eng: In mathematics, an equivariant map is a function between two sets that commutes with the action of a group. Specifically, let G be a group and let X and Y be two associated G-sets. A function f : X → Y is said to be equivariant if :f(g·x) = g·f(x) for all g ∈ G and all x in X. Note that if one or both of the actions are right actions the equivariance condition must be suitably modified: :f(x·g) = f(x)·g ; (right-right) :f(x·g) = g−1·f(x) ; (right-left) :f(g·x) = f(x)·g−1 ; (left-right) |
lexicalization | eng: equivariant map |
instance of | e/Group action |
Meaning | |
---|---|
German | |
has gloss | deu: Unter einer äquivarianten Abbildung versteht man in der Mathematik eine Abbildung die mit der Wirkung einer Gruppe kommutiert. |
lexicalization | deu: Äquivariante Abbildung |
Chinese | |
has gloss | zho: 在数学中,一个等变映射()是两个集合之间与群作用交换的一个函数。具体地,设 G 是一个群,X 与 Y 是两个关联的 G-集合。一个函数 f : X → Y 称为等变,如果 :f(g·x) = g·f(x) 对所有 g ∈ G 与 x ∈ X 成立。注意如果其中一个或两个作用是右作用,则等变条件必须适当地修改: :f(x·g) = f(x)·g ; (右-右) :f(x·g) = g−1·f(x) ; (右-左) :f(g·x) = f(x)·g−1 ; (左-右) |
lexicalization | zho: 等变映射 |
Media | |
---|---|
media:img | Equivariant commutative diagram.png |
Lexvo © 2008-2024 Gerard de Melo. Contact Legal Information / Imprint