Information | |
---|---|
has gloss | eng: In mathematics, the (, German for decision problem) is a challenge posed by David Hilbert in 1928. The asks for an algorithm that will take as input a description of a formal language and a mathematical statement in the language and produce as output either "True" or "False" according to whether the statement is true or false. The algorithm need not justify its answer, nor provide a proof, so long as it is always correct. Such an algorithm would be able to decide, for example, whether statements such as Goldbach's conjecture or the Riemann hypothesis are true, even though no proof or disproof of these statements is known. The has often been identified in particular with the decision problem for first-order logic (that is, the problem of algorithmically determining whether a first-order statement is universally valid). |
lexicalization | eng: Entscheidungs Problem |
lexicalization | eng: Entscheidungsproblem |
instance of | (noun) a hypothesis that has been formed by speculating or conjecturing (usually with little hard evidence); "speculations about the outcome of the election"; "he dismissed it as mere conjecture" conjecture, speculation |
Meaning | |
---|---|
Catalan | |
has gloss | cat: El Entscheidungsproblem (en català: problema de decisió) fou el repte en lògica simbòlica de trobar un algorisme que decidís si una fórmula de càlcul de primer ordre és un teorema. Al 1936, de manera independent, Alonzo Church i Alan Turing demostraren que és impossible escriure tal algorisme. Com a conseqüència, és també impossible decidir amb un algorisme si una frase qualsevol de l'aritmètica és certa o falsa. |
lexicalization | cat: Entscheidungsproblem |
Czech | |
has gloss | ces: Entscheidungsproblem (německý výraz pro „rozhodovací problém“) je úloha, kterou poprvé předložil matematik David Hilbert roku 1928. Ptá se, existuje-li postup (algoritmus), který by uměl rozhodnout, jestli je dané matematické tvrzení v daném formálním jazyce pravdivé nebo nepravdivé. |
lexicalization | ces: Entscheidungsproblem |
Serbo-Croatian | |
has gloss | hbs: U matematici, Entscheidungsproblem (njem. za problem odluke) je izazov koji je postavio David Hilbert 1928. |
lexicalization | hbs: Entscheidungsproblem |
Croatian | |
has gloss | hrv: U matematici, Entscheidungsproblem (njem. za problem odluke) je izazov koji je postavio David Hilbert 1928. |
lexicalization | hrv: Entscheidungsproblem |
Italian | |
has gloss | ita: L'Entscheidungsproblem (in italiano "Problema della decisione") è il secondo dei Problemi di Hilbert, la lista di problemi matematici aperti stilata dal matematico tedesco nel 1900. |
lexicalization | ita: Entscheidungsproblem |
Latin | |
has gloss | lat: Entscheidungsproblem (Lingua Theodisca, quaestio diiudicationis) in mathematica est quaestiuncula a David Hilbert posita anno 1928. |
lexicalization | lat: Entscheidungsproblem |
Portuguese | |
has gloss | por: O Entscheidungsproblem (termo alemão para "problema de decisão") é um problema da lógica simbólica que consiste em achar um algoritmo genérico para determinar se um dado enunciado da lógica de primeira ordem pode ser provado. Em 1936, trabalhando independentemente, Alonzo Church e Alan Turing mostraram que é impossível decidir algoritmicamente se um enunciado na aritmética é verdadeiro ou falso. |
lexicalization | por: Entscheidungsproblem |
Castilian | |
has gloss | spa: El Entscheidungsproblem (en castellano: problema de decisión) fue el reto en lógica simbólica de encontrar un algoritmo general que decidiera si una fórmula del cálculo de primer orden es un teorema. En 1936, de manera independiente, Alonzo Church y Alan Turing demostraron ambos que es imposible escribir tal algoritmo. Como consecuencia, es también imposible decidir con un algoritmo si ciertas frases concretas de la aritmética son ciertas o falsas. |
lexicalization | spa: Entscheidungsproblem |
Chinese | |
has gloss | zho: 可判定性:一个语言L,是一个集合,且其补集为\barL} 。当L是图灵机可识别时,语言L则称为半可判定。当语言L不是图灵机可识别,则为不可判定语言。当且仅当L和\barL}都是图灵机可识别的时候,L才能称为可判定语言。 |
lexicalization | zho: 可判定性 |
Lexvo © 2008-2024 Gerard de Melo. Contact Legal Information / Imprint