Information | |
---|---|
has gloss | eng: Supporting hyperplane is a concept in geometry. A hyperplane divides a space into two half-spaces. A hyperplane is said to support a set S in Euclidean space \mathbb R^n if it meets both of the following: * S is entirely contained in one of the two closed half-spaces determined by the hyperplane * S has at least one point on the hyperplane Here, a closed half-space is the half-space that includes the hyperplane. |
lexicalization | eng: supporting hyperplane |
instance of | e/Topological vector space |
Meaning | |
---|---|
French | |
lexicalization | fra: Hyperplan d'appui |
Russian | |
has gloss | rus: Опорная гиперплоскость множества M в n-мерном векторном пространстве ― (n-1)-мерное аффинное подпространство, которое содержит точки замыкания M и оставляет M в одном замкнутом полупространстве. |
lexicalization | rus: опорная гиперплоскость |
Media | |
---|---|
media:img | Supporting hyperplane1.svg |
media:img | Supporting hyperplane2.svg |
media:img | Supporting hyperplane3.svg |
Lexvo © 2008-2024 Gerard de Melo. Contact Legal Information / Imprint