Information | |
---|---|
has gloss | eng: #P-complete, pronounced "sharp P complete" or "number P complete" is a complexity class in computational complexity theory. A problem is #P-complete if and only if it is in #P, and every problem in #P can be reduced to it by a polynomial-time counting reduction, i.e. a polynomial-time Turing reduction relating the cardinalities of solution sets. Equivalently, a problem is #P-complete if and only if it is in #P, and for any non-deterministic Turing machine ("NP machine"), the problem of computing its number of accepting paths can be reduced to this problem. |
lexicalization | eng: #P-complete |
lexicalization | eng: Sharp P complete |
lexicalization | eng: Sharp-P-Complete |
instance of | e/Complexity class |
Meaning | |
---|---|
French | |
has gloss | fra: #P-complet, prononcée "sharp P complet" ou "dièse P complet", est une classe de complexité en théorie de la complexité. Un problème X est dit #P-complet si et seulement sil appartient à la classe #P, et si on peut réduire tout problème de #P à X par une réduction de comptage fonctionnant en temps polynomial. De manière équivalente, un problème X est #P-complet si et seulement sil appartient à #P et si pour toute machine de Turing non déterministe, le problème consistant à calculer son nombre de chemins acceptants peut être réduit à X. |
lexicalization | fra: #P-complet |
lexicalization | fra: Sharp-P-complet |
Korean | |
has gloss | kor: 계산 복잡도 이론에서 #P-완전은 복잡도 종류의 일종이다. 어떤 문제가 #P-완전이라는 것과, 어떤 문제가 #P이고 모든 #P 문제가 로그 공간만 써서 그 문제로 환산될 수 있다는 것은 동치이다. (실제로는 "인색한 환산"이라는 더 강한 환산이 필요하다. 이 환산은 해의 개수마저도 보존한다.) |
lexicalization | kor: 샤프-P-완전 |
Castilian | |
has gloss | spa: En teoría de la complejidad computacional, la clase de complejidad #P-completo (se pronuncia numeral-P-completo) es el conjunto de los problemas de conteo que pertenecen a #P tales que todo problema de #P se puede reducir en todos los de $P-completo en tiempo polinómico. |
lexicalization | spa: Numeral P completo |
lexicalization | spa: Numeral-P-completo |
Lexvo © 2008-2024 Gerard de Melo. Contact Legal Information / Imprint