German |
has gloss | deu: Unter Graduierung versteht man im mathematischen Teilgebiet der Algebra die Zerlegung einer abelschen Gruppe oder komplizierterer Objekte in Teile eines bestimmten Grades. Das namengebende Beispiel ist der Polynomring in einer Unbestimmten: Beispielsweise ist das Polynom X^3+3X+5 Summe der Monome X^3 (Grad 3), 3X (Grad 1) und 5 (Grad 0). Umgekehrt kann man endlich viele Monome verschiedenen Grades vorgeben und erhält als Summe ein Polynom. |
lexicalization | deu: Graduierung |
French |
has gloss | fra: En mathématiques, en algèbre linéaire, on appelle algèbre graduée une algèbre (ou un anneau commutatif) dotée d'une structure supplémentaire, appelée graduation. |
lexicalization | fra: Algebre graduee |
lexicalization | fra: algèbre graduée |
Hebrew |
has gloss | heb: במתמטיקה, אלגברה מדורגת היא אלגברה (אסוציאטיבית או לא אסוציאטיבית), שיש לה מבנה נוסף, הנקרא דירוג. מבנים כאלה שכיחים בגאומטריה אלגברית, בתורת החוגים, באלגברה הומולוגית ובקומבינטוריקה. |
lexicalization | heb: אלגברה מדורגת |
Russian |
has gloss | rus: Пусть A — алгебра над кольцом k, G — полугруппа. Алгебра A называется G-градуированной (синоним: на A задана G-градуировка), если A разлагается в прямую сумму k-модулей A_g по всем элементам g из G, причём умножение в алгебре согласовано с умножением в полугруппе: : A_f A_g \subset A_fg} Если ненулевой элемент a принадлежит A_g, то он называется однородным степени g. |
lexicalization | rus: Градуированная алгебра |
Castilian |
has gloss | spa: En matemáticas, en particular en álgebra abstracta, un álgebra graduada es un álgebra sobre un cuerpo, o más en general R-álgebra, en la cual hay una noción consistente del peso de un elemento. La idea es de que los pesos de los elementos se sumen, cuando se multiplican los elementos. Aunque se tiene que permitir la adición inconsistente de elementos de diversos pesos. Una definición formal sigue. |
lexicalization | spa: Algebra graduada |
lexicalization | spa: álgebra graduada |