German |
has gloss | deu: In der Komplexitätstheorie steht DTIME(f) oder auch kurz TIME(f) für die Menge der Zeitkomplexitätsklassen in Bezug auf eine deterministische Turingmaschine. Wird eine konkrete Funktion f angegeben, so bedeutet dies: DTIME(f) ist die Klasse derjenigen Entscheidungsprobleme, die auf einer deterministischen Turingmaschine in O(f) Zeit lösbar sind. Man beachte, dass bei Angabe einer konkreten Funktion f die Bezeichnung DTIME(f) für eine einzelne Komplexitätsklasse steht, während bei Verwendung einer nicht näher definierten Funktion f die Bezeichnung DTIME(f) eine ganze Menge von Komplexitätsklassen meint. Darüber hinaus sieht man in der Regel von konstanten Faktoren bei der Funktionsdefinition von f ab und setzt somit DTIME(f) = DTIME(O(f)). Die Rechtfertigung für diese Vorgehensweise liefert u.a. das lineare Speedup-Theorem. |
lexicalization | deu: DTIME |
Japanese |
has gloss | jpn: DTIME(またはTIME)は、計算複雑性理論における決定性チューリング機械での計算時間という計算資源を表す。実在の一般的コンピュータが、ある問題を特定のアルゴリズムで解くのに要する時間の量(ステップ数)を表す。実際のリソース(プログラムの実行にかかる時間)と直接対応することから、最もよく研究されている計算資源の1つである。 |
lexicalization | jpn: DTIME |
Dutch |
has gloss | nld: In de complexiteitstheorie is DTIME(f(n)), ook bekend als TIME(f(n)), een complexiteitsklasse die alle beslissingsproblemen bevat die in O(f(n)) tijd opgelost kunnen worden door een deterministische Turingmachine. |
lexicalization | nld: DTIME |
Castilian |
has gloss | spa: En teoría de la complejidad computacional, la clase de complejidad DTIME(f(n)) (también llamada TIME(f(n))) es el conjunto de los problemas de decisión que pueden ser resueltos en una máquina de Turing determinista en tiempo O(f(n)), y espacio ilimitado. |
lexicalization | spa: DTIME(f(n)) |
lexicalization | spa: DTIME |